以文本方式查看主题

-  声学楼论坛  (http://874085.11480.vipsjym.com.my3w.com/bbs/index.asp)
--  测量、试验及标准室  (http://874085.11480.vipsjym.com.my3w.com/bbs/list.asp?boardid=9)
----  急求“7-term blackman-harris窗”的表达式  (http://874085.11480.vipsjym.com.my3w.com/bbs/dispbbs.asp?boardid=9&id=19253)

--  作者:weihui
--  发布时间:2010-10-21 10:34:39
--  急求“7-term blackman-harris窗”的表达式

我查询了很多的文献和资料,但是只有4-term的,没有7-term的,有知道的吗?急需啊!谢谢啦!!!


--  作者:水仙
--  发布时间:2010-10-21 14:09:43
--  
REFERENCES
[1] http://www.eere.energy.gov
[2] R.Targosz, J.Manson,”Pan-European Power Quality Survey”
in 9th International Conference on Electrical Power Quality and
Utilisation, EPQU 2007, pp1-6.
[3] R.C.Dugan, M.F Mc Granaghan, S.Santoso, H.W.Beaty,
“Electrical Power Systems Quality”, Second edition, McGraw-
Hill, p.528
[4] M.PatSalides, A.Stavrou,G.Makrides, V.Efthimiou and
G.E.Georghiou, “ Harmonic Response of Distributed Grid
Connected Photovoltaic Systems”
[5] H.Lev,A.MStankovic.S.Lin “Application of staggered under
sampling to power quality monitoring”, IEEE trans on Power
Delivery 15 (3), 2000.
[6] http://www.ost.gov
[7] L.R.Rabiner, R.W.Schafer,C.M.Rader, “The Chirp ZTransform
Algorithm” IEEE Transactions on Audio and
Electroacoustics, Volume AU-17,NO.2, June 1969pp 86-92.
[8] Fredric.J.Harris, “ On the Use of Windows for Harmonic
Analysis with Discrete fourier transform ”, proceedings of The
IEEE Vol.66, No.1 January 1978 pp 51-83.
[9] http://ccrma.stanford.edu
[10] http://en.wikipedia.org
ISSN : 0975-4024 193

--  作者:水仙
--  发布时间:2010-10-21 14:11:36
--  

图片点击可在新窗口打开查看此主题相关图片如下:harris.jpg
图片点击可在新窗口打开查看

--  作者:水仙
--  发布时间:2010-10-21 14:13:24
--  

Algorithm

The equation for computing the coefficients of a minimum 4-term Blackman-harris window of length N is:

The following table lists the coefficients:

Coefficient Value
a0 0.35875
a1 0.48829
a2 0.14128
a3 0.01168

References

[1] Harris, F. J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform." Proceedings of the IEEE. Vol. 66 (January 1978). pp. 51-84.

See Also


--  作者:水仙
--  发布时间:2010-10-21 14:32:34
--  

 

On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform:

http://utdallas.edu/~cpb021000/EE%204361/Great%20DSP%20Papers/Harris%20on%20Windows.pdf


--  作者:水仙
--  发布时间:2010-10-21 14:33:48
--  

“7-term blackman-harris窗”的表达式是有。

但具体系数是多少?上述论文里也没有见到。

[此贴子已经被作者于2010-10-21 14:35:40编辑过]

--  作者:水仙
--  发布时间:2010-10-21 15:22:16
--  

Tailoring of Minimum Sidelobe Cosine-Sum Windows

http://www.bentham.org/open/tosigpj/articles/V003/20TOSIGPJ.pdf 

 

里面有更高项的系数(2010年的论文)



--  作者:Completist
--  发布时间:2010-10-21 17:11:17
--  

Weighting Type

   Default Overlap (%)

None

   0   

Hanning

75

4 Term Blackman-Harris

85

7 Term Blackman-Harris

90


--  作者:Completist
--  发布时间:2010-10-21 17:11:27
--  

Weighting Type

   Default Overlap (%)

None

   0   

Hanning

75

4 Term Blackman-Harris

85

7 Term Blackman-Harris

90


--  作者:weihui
--  发布时间:2010-10-24 18:48:47
--  
哇塞,这个楼太好了,谢谢你们,太感谢你们了图片点击可在新窗口打开查看
--  作者:weihui
--  发布时间:2010-10-24 19:06:52
--  
谢谢你的指导,谢谢
--  作者:weihui
--  发布时间:2010-10-24 19:07:34
--  
谢谢你的指导,谢谢,呵呵
--  作者:weihui
--  发布时间:2010-10-25 11:46:43
--  
不行啊,我打开了,但是还是没有系数值呢?还有知道的吗?谢谢啊
--  作者:钟灵
--  发布时间:2010-10-25 12:44:00
--  

Search for follwing paper. if you
dont get the paper over net send
me your personal email id.

my email id is bharat\\at\\arithos\\com

A FAMILY OF COSINE-SUM WINDOWS
FOR HIGH-RESOLUTION MEASUREMENTS
Hans-Helge Albrecht
Physikalisch-Technische Bundesanstalt
Abbestra?e 2-12, D-10587 Berlin, Germany
Phone: +49 30 3481 311 Fax: +49 30 3481 490
E-mail: hans-helge.albrecht(a)ptb.de

rgds
bharat pathak

Arithos Designs
www.Arithos.com

DSP design consultancy and Training Company

 

找上面论文或直接发邮件询问!


--  作者:钟灵
--  发布时间:2010-10-25 12:46:56
--  
A better terminology might be "minimum sidelobe cosine-sum" window.

harris doesn\'t seem to have published past 4 terms and his 4 term
optimized window had 92 dB sidelobe rejection. Nuttall provided a
correction to the 4 term coefficients to yield 98 dB sidelobe
rejection. So, harris\' 4 term wasn\'t minimum sidelobe. Nuttall doesn\'t
seem to have published past 4 terms either.

So, if you want a five-term minimum sidelobe cosine-sum window you
could use:

acoef = [0.3232153788877343 0.4714921439576260
0.1755341299601972 ...
2.849699010614994e-2 1.261357088292677e-3];

from the Albrecht paper:

A family of cosine-sum windows for high-resolution measurements
Albrecht, H.H.
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP
apos;01). 2001 IEEE International Conference on
Volume 5, Issue , 2001 Page(s):3081 - 3084 vol.5

The paper gives up to 11 terms and -289 dB sidelobe rejection. At 12
terms there were numerical problems with running the optimization in
64 bit floating point. Albrecht\'s 4 term coefficients agree with
Nuttal\'s 4 term values.
The 7 term window appears in some 24-bit A-D converter application
notes published before Albrecht\'s paper. The values published were
consistent with Albrecht\'s. A number of people have successfully run
the optimization for various numbers of coefficients so I go with
"minimum sidelobe cosine-sum" window for the family.

Dale B. Dalrymple
http://dbdimages.com

--  作者:钟灵
--  发布时间:2010-10-25 12:52:16
--  
Coeff. Window 1 Window 2 Window 3
A0 2.374298741532465928226 · 10??01 2.310581202331358499435 · 10??01 2.249924617087535177329 · 10??01
A1 3.994704373801009358001 · 10??01 3.922514736021656858831 · 10??01 3.851495428292902693259 · 10??01
A2 2.362644608100282475133 · 10??01 2.385553629158978655597 · 10??01 2.403597686865028390968 · 10??01
A3 9.620676838363516649024 · 10??02 1.021288669149117706979 · 10??01 1.077408077837851454781 · 10??01
A4 2.591512168016078991738 · 10??02 2.977294169292394185833 · 10??02 3.373630665800276621290 · 10??02
A5 4.307708101213669512442 · 10??03 5.586700597441296634013 · 10??03 7.046059650969717333158 · 10??03
A6 3.904113541372495568636 · 10??04 6.129851690844686016343 · 10??04 9.096091349642873804482 · 10??04
A7 1.508613505022821880403 · 10??05 3.295793164220405682537 · 10??05 6.357820763745181479203 · 10??05
A8 1.320024271202038321705 · 10??07 5.899889578740096042846 · 10??07 1.853811776589548714026 · 10??06

--  作者:钟灵
--  发布时间:2010-10-25 13:00:47
--  
Albrecht, H.H.;  
Phys. Tech. Bundesanstalt, Berlin 

This paper appears in: Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP \'01). 2001 IEEE International Conference on
Issue Date: 2001
On page(s): 3081 - 3084 vol.5
Meeting Date: 07 五月 2001 - 11 五月 2001
Location: Salt Lake City, UT , USA
Print ISBN: 0-7803-7041-4
References Cited: 6
INSPEC Accession Number: 7153833
Digital Object Identifier: 10.1109/ICASSP.2001.940309 
Date of Current Version: <!-- 2002年8月7日 星期三-->07 八月 2002

Abstract

Special windows are used in spectral analysis to reduce the effect of spectral leakage. Windows with low sidelobe amplitude are necessary for the detection of small signals when highly dynamic spectra are concerned. The design of a family of cosine-sum windows with minimum sidelobes is described. The coefficients and selected parameters for windows with a peak sidelobe level between 43 dB and 289 dB are stated

<!-- BEGIN INDEX TERMS -->

Available to subscribers and IEEE members.

 

 

可惜不是IEEE会员,下载不了此论文.


--  作者:钟灵
--  发布时间:2010-10-25 13:04:26
--  
coeff. 4-term window 5-term window 6-term window 7-term window
A0 3.635819267707608e-001 3.232153788877343e-001 2.935578950102797e-001 2.712203605850388e-001
A1 4.891774371450171e-001 4.714921439576260e-001 4.519357723474506e-001 4.334446123274422e-001
A2 1.365995139786921e-001 1.755341299601972e-001 2.014164714263962e-001 2.180041228929303e-001
A3 1.064112210553003e-002 2.849699010614994e-002 4.792610922105837e-002 6.578534329560609e-002
A4 1.261357088292677e-003 5.026196426859393e-003 1.076186730534183e-002
A5 1.375555679558877e-004 7.700127105808265e-004
A6 1.368088305992921e-005

--  作者:钟灵
--  发布时间:2010-10-25 13:07:12
--  

图片点击可在新窗口打开查看此主题相关图片如下:table.jpg
图片点击可在新窗口打开查看

--  作者:钟灵
--  发布时间:2010-10-25 13:09:54
--  

coeff. 7-term window
A0 2.712203605850388e-001
A1 4.334446123274422e-001
A2 2.180041228929303e-001
A3 6.578534329560609e-002
A4 1.076186730534183e-002
A5 7.700127105808265e-004
A6 1.368088305992921e-005

 

找到了!