什么叫磁能积(BH)m |
|
在永磁材料的B退磁曲线上(二象限),不同的点对应着磁体处在不同的工作状态,B退磁曲线上的某一点所对应的Bm和Hm(横坐标和纵坐标)分别代表磁体在该状态下,磁体内部的磁感应强度和磁场的大小,Bm和Hm的绝对值的乘积(BmHm)代表磁体在该状态下对外做功的能力,等同于磁体所贮存的磁能量,称为磁能积。在B退磁曲线上的Br点和bHc点,磁体的(BmHm)=0,表示此时磁体对外做功的能力为0,即磁能积为0;磁体在某一状态下(BmHm)的值最大,表示此时磁体对外做功的能力最大,称为该磁体的最大磁能积,或简称磁能积,记为(BH)max或(BH)m。因此,人们通常都希望磁路中的磁体能在其最大磁能积状态下工作。 磁能积的单位在SI制中为J/m3(焦耳/立方米),在CGS制中为MGOe(兆高奥斯特),4??10 J/m3=1 MGOe。 |
什么叫居里温度(Tc),什么叫磁体的可工作温度Tw,二者有何关系 |
|
随着温度的升高,由于物质内部基本粒子的热振荡加剧,磁性材料内部的微观磁偶极矩的排列逐步紊乱,宏观上表现为材料的磁极化强度J随着温度的升高而减小,当温度升高至某一值时,材料的磁极化强度J降为0,此时磁性材料的磁特性变得同空气等非磁性物质一样,将此温度称为该材料的居里温度Tc。居里温度Tc只与合金的成分有关,与材料的显微组织形貌及其分布无关。 在某一温度下永磁材料的磁性能指标与室温相比降低一规定的幅度,将该温度称为该磁体的可工作温度Tw。由于磁性能的这一降低幅度需要视该磁体的应用条件及要求而定,因此,所谓的磁体的可工作温度Tw对于同一磁体来说是一个待定值,也就是说,同一永磁体在不同的应用场合可以有不同的可工作温度Tw。 显然,磁性材料的居里温度Tc代表着该材料的理论工作温度极限。事实上,永磁材料的实际可工作Tw远低于Tc。例如,纯三元的Nd-Fe-B磁体的Tc为312?C,而其实际可工作Tw通常不到100?C。通过在Nd-Fe-B合金中添加重稀土金属以及Co、Ga等元素,可显著提高Nd-Fe-B磁体的Tc和可工作Tw。值得注意的是,任何永磁体的可工作Tw不仅与磁体的Tc有关,还与磁体的jHc等磁性能指标、以及磁体在磁路中的工作状态有关。 |
什么叫永磁体的回复导磁率(?rec.),什么叫J退磁曲线方形度(Hk/jHc),它们有何意义 |
|
当磁体处在动态工作条件下时,外部反向磁场H或磁体内部的退磁场Hd呈周期性变化,此时如图2所示的工作点D亦呈周期性往复变化,定义在磁体的B退磁曲线上工作点D往复变化的轨迹为磁体的动态回复线,该线的斜率为回复导磁率?rec.。显然,回复导磁率?rec.表征了磁体在动态工作条件下的稳定性,它也是永磁体的B退磁曲线方形度,因此它是永磁体的一个重要的磁特性指标之一。对于Nd-Fe-B烧结磁体,B退磁曲线为直线且bHc约等于Br,其回复导磁率?rec.等于B退磁曲线的斜率且?rec.=1.03~1.10。?rec越小,磁体在动态工作条件下的稳定性就越好。 值得注意的是,若磁体的B退磁曲线不是直线,则磁体的回复导磁率?rec.在不同工作点就有不同的值,此时如何把磁体设计在最稳定的工作状态,就显得非常重要。 定义磁体的J退磁曲线上,J=0.9Jr时的反向磁场大小为Hk,Hk/jHc可以直观地表示磁体的J退磁曲线方形度。对于具有高jHc的Nd-Fe-B烧结磁体,jHc远远大于bHc,当反向磁场大于bHc但小于jHc时,相应的B退磁曲线已进入第三象限。由(1-1)式可知,此时若磁体的J退磁曲线仍为直线,则相应第三象限的B退磁曲线亦保持直线,此时磁体的?rec仍保持较小值,在反向外磁场撤消后,磁体的工作点仍能恢复到原来的位置。因此,Hk/jHc也是永磁体的一个重要的磁特性指标之一,它和?rec一样,表征了磁体在动态工作条件下的稳定性。 |
金属磁性材料分为几大类,它们是如何划分的 |
|
金属磁性材料分为永磁材料、软磁材料二大类。通常将内禀矫顽力大于0.8kA/m的材料称为永磁材料,将内禀矫顽力小于0.8kA/m的材料称为软磁材料。 |
什么叫Nd-Fe-B永磁体,它分几大类 |
|
Nd-Fe-B永磁体是1982年发现的迄今为止磁性能最强的永磁材料。其主要化学成分为 Nd(钕)、Fe(铁)、B(硼),其主相晶胞在晶体学上为四方结构,分子式为Nd2Fe14B(简称2:14:1相)。除主相Nd2Fe14B外,Nd-Fe-B永磁体中还含有少量的富Nd相、富B相等其它相。其中主相和富Nd相是决定Nd-Fe-B磁体永磁特性的最重要的二个相。今天,Nd-Fe-B永磁体已广泛应用于计算机、医疗器械、通讯器件、电子器件、磁力机械等领域。 Nd-Fe-B磁体分为烧结和粘结二大类。通常的Nd-Fe-B烧结磁体是用粉末冶金方法制造的各向异性致密磁体;而通常的Nd-Fe-B粘结磁体是用激冷的方法获得微晶粉末,每个粉末内含有多个Nd-Fe-B微晶晶粒,再用聚合物或其它粘结剂将粉末粘结成大块磁体,因而通常的Nd-Fe-B粘结磁体是非致密的各向同性磁体。因此,通常的Nd-Fe-B烧结磁体的磁性能远高于Nd-Fe-B粘结磁体,但Nd-Fe-B粘结磁体有着许多Nd-Fe-B烧结磁体不可替代的优点:可以用压结、注射等成型方法制作尺寸小、形状复杂、几何精度高的永磁体,并容易实现大规模自动化生产;另外,Nd-Fe-B粘结磁体还便于任意方向充磁,能方便制作多极乃至无数极的整体磁体,而这对于Nd-Fe-B烧结磁体来说通常很难实现;由于Nd-Fe-B粘结磁体中主相Nd2Fe14B呈微晶状态,因此它还具有比烧结磁体耐蚀性好等优点。 |
Nd-Fe-B烧结磁体的制作工艺是什么样的流程 |
|
在中国,通常的Nd-Fe-B烧结磁体制作工艺流程是: 熔炼合金----制粉----取向压型-----烧结-----回火-----磁性能检测-----毛坯精整-----切割-----精磨-----半成品检验-----电镀-----成品检验-----包装入库。 |
烧结Nd-Fe-B磁体的深加工工艺有何特点
烧结Nd-Fe-B磁体的深加工工艺流程是:
磁体毛坯----外轮廓精整----切割----精磨----倒角----电镀----检验、测试----成品
磁体的外轮廓精整一般用无心磨床(圆柱形磁体)或平面磨床(方形磁体)完成,使毛坯磁体具有规整的外轮廓度并达到规定的几何尺寸;
切割工序是用金刚石内圆切片机或线切割机,将精整后的毛坯磁体切割成接近成品的形状和尺寸;
精磨工序是将切割好的磁体用平面磨床、双面磨床或其它磨床将磁体的尺寸、形位公差加工到成品所规定的要求;
倒角是电镀前的预处理工序,为减缓在电镀过程中磁体棱边因电流密度相对集中而造成的镀层厚度不均匀。由于通常的烧结Nd-Fe-B成品磁体尺寸小、形状不一,因此采用自由滚磨光整工艺最为适合该产品的大批量倒角加工。自由滚磨光整技术有:振动式滚磨光整、涡流式滚磨光整、离心式滚磨光整、主轴式滚磨光整等多种方法。其中,振动式滚磨光整生产效率高、倒角速度快,已广泛为烧结Nd-Fe-B磁体深加工厂家所采用;
电镀是为了在磁体表面形成对磁体的保护层,通常采用自由滚镀工艺来实现,对于尺寸较大的磁体,则采用挂镀工艺。烧结Nd-Fe-B磁体的镀层视磁体的使用环境和外观要求分镀Ni、镀Zn、磷化、电泳、合金镀、复合镀等。
烧结Nd-Fe-B磁体的表面保护层除电镀外,还有物理气相沉积(PVD)法,物理气相沉积又分蒸发镀、溅射镀、离子镀三类,可形成Al、Zn、Cr等镀层;化学气相沉积(CVD)则可形成Ti、Cr等的氮化物、碳化物镀层。此外,烧结Nd-Fe-B磁体还可以用表面化学钝化、化学镀、热浸渍、热喷涂等方法获得各种不同的表面保护层。
检验、测试工序是对磁体成品的尺寸和形位公差、外观状态、镀层耐蚀性、磁性能等产品规定的各项指标进行检测
烧结Nd-Fe-B磁体的机械性能有何特点
烧结Nd-Fe-B磁体是一种典型的脆性材料。在磁体的加工、组装、使用过程中,需注意防止磁体承受剧烈的冲击、碰撞、和过大的张应力,以免磁体开裂或崩边掉角。
值得注意的是,由于充磁状态的烧结Nd-Fe-B磁体磁力很强,在操作磁化状态的磁体时,还需特别注意人身安全。对于尺寸较大的磁化状态磁体的组装,必须事先配备好相应的组装工具,防止因磁体的强吸合力扎伤手指。
烧结Nd-Fe-B磁体的电镀工艺有何特点 |
|
烧结Nd-Fe-B磁体电镀的基本工艺大致可分为如下三个阶段: 1. 镀前表面处理 磁体镀前要进行除油、清洗、浸蚀(活化)、再清洗等表面处理,电镀前磁体的表面要做到无油污、无氧化皮及锈蚀物等,镀前磁体的表面状况直接影响产品的镀层质量。 2. 电镀 经表面处理后的磁体进行电镀时,镀层质量的好坏主要取决于镀液配方和操作条件等因素。因此,在电镀操作过程中必须严格遵守工艺规范,控制好镀液成分、添加剂配比、工作温度、电流密度等参数,并根据镀层厚度要求和沉积速度,控制好电镀时间。 3. 镀后处理 镀后处理也是电镀中的一个重要环节。例如,磁体在电镀后一般要进行中和处理和清洗,有时还要进行光泽处理(出光)、钝化、有机物涂覆等处理以满足产品的特殊要求。 |